A matrix-algebraic formulation of distributed-memory maximal cardinality matching algorithms in bipartite graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A matrix-algebraic formulation of distributed-memory maximal cardinality matching algorithms in bipartite graphs

We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributedmemory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many unmatched vertices simultaneously using a matrix-algebraic formulation of maximal matching. This generic matrix-algebraic framework is used to develop three efficient maximal match...

متن کامل

GPU Accelerated Maximum Cardinality Matching Algorithms for Bipartite Graphs

We design, implement, and evaluate GPU-based algorithms for the maximum cardinality matching problem in bipartite graphs. Such algorithms have a variety of applications in computer science, scientific computing, bioinformatics, and other areas. To the best of our knowledge, ours is the first study which focuses on GPU implementation of the maximum cardinality matching algorithms. We compare the...

متن کامل

Experiments on Push-Relabel-based Maximum Cardinality Matching Algorithms for Bipartite Graphs

We report on careful implementations of several push-relabel-based algorithms for solving the problem of finding a maximum cardinality matching in a bipartite graph and compare them with fast augmentingpath-based algorithms. We analyze the algorithms using a common base for all implementations and compare their relative performance and stability on a wide range of graphs. The effect of a set of...

متن کامل

Minimum Maximal Matching Is NP-Hard in Regular Bipartite Graphs

Yannakakis and Gavril showed in [10] that the problem of finding a maximal matching of minimum size (MMM for short), also called Minimum Edge Dominating Set, is NP-hard in bipartite graphs of maximum degree 3 or planar graphs of maximum degree 3. Horton and Kilakos extended this result to planar bipartite graphs and planar cubic graphs [6]. Here, we extend the result of Yannakakis and Gavril in...

متن کامل

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Parallel Computing

سال: 2016

ISSN: 0167-8191

DOI: 10.1016/j.parco.2016.05.007